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Abstract

A mathematical model of heat, momentum and solute transfer during directional solidi®cation of binary alloys in

a Bridgman furnace has been developed. A ®xed grid single domain approach (enthalpy method) is used. The e�ects
of coupling with the phase diagram (a concentration-dependent melting temperature) and of thermal and solutal
convection on segregation of solute, shape and position of the solid/liquid interface are investigated. A vorticity±

stream function formulation is used for calculation of the velocity ®elds. The results presented include calculations
at 1 and 10 mg, both neglecting and including the dependence of melting temperature on concentration. # 2000
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The investigation of solidi®cation processes has

great practical importance for crystal growth tech-

niques. The quality of single crystals grown from the

melt depends strongly on growth morphology and

macro-segregation caused by convection e�ects in sol-

idi®ed ingots. A low gravity environment is often used

for fundamental studies of crystal growth because it

produces conditions in which convection is eliminated

or at least decreased to a level at which crystal growth

is largely controlled by di�usion. Residual acceler-

ations in orbiting space vehicles are of the order of

one to several hundred mg (where 1 mg = 9.81 � 10ÿ6

m sÿ2). For this reason, much e�ort has been expended

in recent years in performing crystal growth exper-

iments in the microgravity environment of a spacecraft

in earth orbit. Such e�ects as compositional and kin-

etic supercooling, and the in¯uence of convection on

compositional distribution in the melt, have been

investigated under microgravity.

The MEPHISTO-4 Program is a joint US±French±

Australian research e�ort directed towards gaining a

detailed understanding of the role of buoyancy-driven

convection during the directional solidi®cation of

faceted materials in a Bridgman apparatus, speci®cally

International Journal of Heat and Mass Transfer 43 (2000) 963±980

0017-9310/00/$ - see front matter # 2000 Published by Elsevier Science Ltd. All rights reserved.

PII: S0017-9310(99 )00176-3

www.elsevier.com/locate/ijhmt

* Corresponding author. Tel.: +61 2 9385 4099; fax: +61 2

9663 1222.

E-mail address: g.devahldavis@unsw.edu.au (G. de Vahl

Davis).



an alloy of bismuth with 1 at% tin. It combines

ground-based experiments and a series of experiments

conducted in a microgravity environment. Part of this

program is a numerical modelling of the solidi®cation

process.

The MEPHISTO apparatus, shown schematically in

Fig. 1, consists of three parallel tubes or ampoules

(only one is shown in the ®gure), each containing the

Bi±Sn alloy, around which are placed two `furnaces',

each comprising a pair of heating and cooling jackets.

Between each heating and cooling jacket is a nominally

adiabatic or insulated zone. One furnace is ®xed, and

acts to generate a reference state; the other can be

moved over the tubes. If it moves in the direction from

the cooling to the heating jacket (i.e., to the right in

Fig. 1), and if the heating and cooling rates are chosen

appropriately, the material will be progressively solidi-

®ed from left to right.

Many numerical investigations of solidi®cation of

alloys in di�erent Bridgman growth con®gurations

have been carried out in recent years. Chang and

Brown [1] studied radial segregation induced by natu-

ral convection in a vertical Bridgman cavity for dilute

alloys. Adornato and Brown [2] considered both dilute

and concentrated alloys with convection driven by

both temperature and concentration gradients.

Alexander et al. [3] investigated the e�ects of residual

acceleration on dopant distribution in Bridgman±

Stockbarger crystal growth with di�erent gravity vec-

tor orientations. Yao et al. [4] evaluated the e�ects of

various gravity levels on solute segregation for vertical

and horizontal Bridgman growth con®gurations.

Nomenclature

B buoyancy ratio, ��bCCr�=�bTDTr�
cp speci®c heat at constant pressure
C solute concentration

D solute di�usivity
f volume fraction
F convection ¯ux

g gravity acceleration
G imposed temperature gradient
h enthalpy

H ampoule height
k time step
kp partition coe�cient
L latent heat

Le Lewis number, a=D
m slope of liquidus line
p iteration number

Pr Prandtl number, cpm=l
q di�usion ¯ux
R interface velocity

Ra Rayleigh number, rgbDTrH
3=am

Sc source term
St Stefan number, cpDTr=L
t time
T temperature
Tm melting temperature
V velocity

u velocity component in x-direction
v velocity component in y-direction
a thermal di�usivity

bC solutal expansion coe�cient
bT thermal expansion coe�cient
DTr Th ÿ Tc

Dx mesh size in x-direction
Dy mesh size in y-direction

g characteristic parameter
gc solute segregation at the interface
l thermal conductivity

m viscosity
r density
x distance measured from interface

c stream function
z vorticity

Subscripts
ave average value

c cold zone
cr critical
h hot zone

I interface
i,j grid point
l liquid

min minimum value
max maximum value
n normal direction
r reference value

s solid
sens sensible heat
f phase

0 initial value

Superscripts
0 vector
^ unit vector

k time step
p inner iteration
' dimensionless quantity
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In all of these works a pseudo steady-state model

was adopted. This is a simpli®cation of the true

unsteady solidi®cation process, and neglects transient

e�ects such as changes in the velocity, temperature and

concentration with time due to changes in the length

of melt caused by translating the ampoule. It was also

assumed that the melting temperature at the interface

is constant and hence that the rate of solidi®cation is

the same as the rate of furnace translation. In reality

the melting temperature changes with concentration

during the initial transients, thus producing a lagging

of the interface movement compared with steady

growth. Investigation of solute redistribution during

the initial transients becomes crucial for an alloy with

a low partition coe�cient solidifying at low rates

because the steady state is di�cult to reach in labora-

tory experiments.

For modelling transient phase change processes, a

®xed grid single domain approach (commonly called

the enthalpy method) appears to be more applicable

due to its relative simplicity and low computational

cost compared with front tracking methods. It has

been used successfully for modelling various compli-

cated phase-change systems including dendritic struc-

tures [5,6]. Single domain models reduce the general

multiphase system to a single continuum medium and

permit the solution of the conservation equations to be

obtained in the entire domain including the solid,

liquid and what is known as the mushy zone (if any).

The boundary conditions applied at the solid±liquid

interface in multi-domain methods are replaced by
source terms in the energy, momentum and (for alloys)
solute conservation equations [7]. A number of math-

ematical models for binary liquid±solid phase change
problems using a ®xed grid have been developed [8],
most of them for alloys which solidify over a tempera-

ture-range.
In the Bridgman con®guration with low growth

speeds and high thermal gradients in the adiabatic

zone, the interface stays sharp and phase change has
to be treated as isothermal, i.e., there is no mushy
zone or transition region between the solid and the
liquid. Implementation of the enthalpy method for

modelling the isothermal phase change of alloys
becomes quite a challenging problem because of the
additional di�culties associated with the discontinuity

of solute concentration at the interface and sharp
gradients of concentration at the interface induced by
the low value of partition coe�cient. These are the

conditions, which apply in MEPHISTO.

2. Mathematical model

We consider a Bridgman furnace in which a moving
temperature pro®le consisting of a cold zone (Tc), a
nominally adiabatic zone and a hot zone (Th) is

imposed on the boundary of the ampoule. This bound-
ary temperature pro®le is translated with a constant
pulling velocity as a result of the furnace movement

Fig. 1. Schematic diagram of the MEPHISTO apparatus, and the nominal boundary temperature distribution. H and C denote the

hot and cold sections of the furnaces; A denotes the adiabatic zone.
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causing the solid/liquid interface to move along the
ampoule. The material in the ampoule is thus divided

into two sub-regions: solid and liquid.
Although the ampoule is three-dimensional, a two-

dimensional model is used. This simpli®cation is valid

because, under the microgravity conditions being con-
sidered, convection is very weak and the solidi®cation
process remains largely di�usion-controlled and to

some extent even one-dimensional. Newtonian and
laminar ¯ow is assumed in the liquid phase, and the
Boussinesq approximation has been used, in which the

liquid density is assumed to be constant except in the
buoyancy term of the equation of motion.
The governing time dependant equations describing

mass, momentum, heat and solute transport in the vor-

ticity±stream function formulation are:

r

�
@z
@ t
� r �

ÿ
~Vz
��
� rr� ĝjgj � mr2z �1�

r2c � ÿz �2�

rcp

�
@T

@ t
� r �

ÿ
~VT
��
� lr2T �3�

@C

@ t
� r �

ÿ
~VC
�
� Dr2C �4�

where r,m, cp, l and D are, respectively, the density,
viscosity, speci®c heat and thermal conductivity of the
alloy and the di�usivity of the solute; z, c, T, ~V and C
are respectively the vorticity, stream function, tempera-

ture, velocity vector and solute concentration; g is the
magnitude of the gravitational acceleration, and ĝ is
the unit vector in the direction of gravity. The density

in the buoyancy term of Eq. (1) is assumed to be a lin-
ear function of temperature and solute concentration:

r � rr

�
1ÿ bT�Tÿ Tr � � bC�Cÿ Cr �

� �5�

where bT and bC are the (assumed constant) thermal
and solutal expansion coe�cients, de®ned by

bT � ÿ
1

rr

@r
@T

�6�

and

bC �
1

rr

@r
@C

�7�

rr, Tr and Cr are reference values of density, tempera-
ture and concentration.

Latent heat evolution during phase change is incor-
porated in the energy equation by introducing a source
term for enthalpy. For each phase f, enthalpy is

de®ned as

h �
�T
0

cpf dT� flL, �8�

where L is the latent heat and fl is a local liquid
volume fraction.
With the assumption that speci®c heat cf is constant

in each phase, Eq. (8) can be written as

h � cpfT� flL � hsens � flL, �9�

in which hsens is the sensible heat. Using the apparent
heat capacity method [9], an e�ective speci®c heat can

be de®ned by

C ��T� � @h

@T
� cpf � L

@ fl
@T
: �10�

Using Eq. (10), the energy equation (3) can be written
as

r

�
C ��T�@T

@ t
� cpfr �

ÿ
~VT
��
� lr2T: �11�

To solve Eq. (11), an e�ective heat capacity coe�cient
@ fl=@T has to be calculated. We de®ne

@ fl
@T
� @ fl=@n

@T=@n
� �fl �nTn

T 2
n

� �fl �xTx � �fl �yTy

T 2
x � T 2

y

�12�

where subscripts n (denoting the normal direction), x
and y denote di�erentiation.

As the temperature distribution on the boundary
and hence the solid/liquid interface moves, the solid
sub-region of the computational domain increases in
length. In the solid, the vorticity, stream function and

velocities are set to zero. In the liquid, they are calcu-
lated from the stream function de®ned as

~V � r � ~c: �13�

2.1. Solute transport with phase change

The most di�cult problem in modelling solute trans-
port during solidi®cation is associated with the discon-
tinuity of solute concentration at the interface.
Additional di�culties occur due to the presence of a

thin solute boundary layer in the liquid in which large
solute gradients develop, induced by the low partition
coe�cient. The basic assumptions in the analysis are:

. Thermodynamic equilibrium exists at the solid±
liquid interface: Tm � Ts � Tl and Cs � kpCl, where
kp is the partition coe�cient.

. Solute di�usion in the solid phase is negligible.

. The solid phase is stationary and a distinct separ-
ation of the phases exists at the interface.
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. The densities and thermal conductivities of the
liquid and solid phases are constant and equal.

A source term accounting for the release of solute
into the liquid during solidi®cation is derived by con-
sidering the average concentration in an arbitrary con-

trol volume which is undergoing phase change [7]. This
control volume can be treated as partially solidi®ed
with an average concentration de®ned as

C � fsCs � flCl �14�

where fs � 1ÿ fl is the local solid volume fraction.
Since di�usion in the solid is neglected, Cs at any pos-

ition in the interior of the solid is not a function of
time and @Cs=@ t � 0: Noting that Cs � kpCl at the
interface, Eq. (14) may then be di�erentiated to yield

@C

@ t
� ÿ@ fs

@ t

ÿ
1ÿ kp

�
Cl � �1ÿ fs �@Cl

@ t
: �15�

The ®rst term on right-hand side of Eq. (15) can be
interpreted as the change in the concentration deter-
mined by the mass ¯ux at the solidi®cation front

which is moving with velocity R � �@ fs=@ t�Dx, releasing
solute into the liquid due to di�erences in the solid
and liquid concentration at the interface. Here Dx is
the size of control volume in the direction of solidi®-

cation. The second term is associated with the fact that
this release occurs in the liquid fraction of the partially
solidi®ed control volume. Eq. (15) is used in place of

the ®rst term on the left-hand side of Eq. (4). In the
other terms, C is replaced by Cl since Eq. (4) applies
only to the liquid region. This leads to

@Cl

@ t
� r �

ÿ
~VCl

�
� Dr2Cl � Sc �16�

where

Sc � @ fs
@ t

ÿ
1ÿ kp

�
Cl � fs

@Cl

@ t
: �17�

Eqs. (16) and (17) apply to liquid concentration only
and hence bypass the concentration discontinuity at
the interface.

During the initial transients of solidi®cation, the
melting temperature varies with time due to changes in
the concentration of the solute. With the assumption

that phase change takes place under local thermody-
namic equilibrium, the temperature at the interface Ð
the melting temperature Tm�C � Ð can be expressed as

Tm�C� � Tm0 �mCI �18�

where Tm0 is the melting temperature of pure solvent,

CI is the interface solute concentration, m is slope of
the liquidus, assumed to be constant and obtained
from the phase diagram for the particular alloy.

2.2. Calculation of liquid fraction

For isothermal phase change, the liquid fraction is
determined by the melting temperature Tm:

for T > Tm fl � 1

for T < Tm fl � 0: �19�
Tm in turn is determined by the cell average solute con-
centration in the liquid portion of each cell containing
the interface. The liquid fraction undergoes a step

change when the interface crosses a grid line, which
can cause serious numerical instabilities. To overcome
this problem, a control volume was de®ned around

each grid point, in which the liquid fraction could be
estimated. Phase change is considered to take place
over one control volume, in which Eq. (19) is replaced
by a linear approximation:

for Ti,j > Tm � DT fl � 1

for Tm ÿ DTRTi,jRTm � DT

fl �
ÿ
Ti,j ÿ Tm � DT

�
=2DT

�20�

for Ti,j < Tm ÿ DT fl � 0:

Here 2DT is a temperature interval chosen so that the
time taken for the computational cell to change tem-
perature by 2DT due to the boundary temperature pro-

®le translation is approximately the same as the time
necessary for the cell to change phase completely.
In directional solidi®cation, the direction of interface

movement is known. This fact can be used with advan-
tage to evaluate the liquid fraction. If the cell bound-
ary temperatures in the direction of crystal growth are

Tiÿ1=2,j and Ti�1=2,j, respectively, and the melting point
is Tm, the liquid fraction fl is given by

fl � Ti�1=2,j ÿ Tm

Ti�1=2,j ÿ Tiÿ1=2,j
: �21�

Based on the calculated values at each mesh point of
liquid fraction the computational domain is subdivided
into sub-regions of solid and liquid phases in the fol-
lowing manner. If the liquid fraction in a particular

�i,j� point is calculated to be less than or equal to 0.5,
the corresponding cell is de®ned as being `solid' for the
purpose of computing the ¯ow: the velocities, vorticity

and stream function there are set to zero. If the liquid
fraction is greater than 0.5, the cell is de®ned as being
`liquid', and the ¯ow calculations are as normal. The

interface position is determined using the value of the
liquid fraction. To account for the evolution of latent
heat and release of solute during solidi®cation, the
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cells where the liquid fraction is between zero and one
are treated as partially solidi®ed cells.

2.3. Non-dimensional equations

Using H (the height of the ampoule), H 2=a (where a
is the thermal di�usivity) and a=H as scale factors for
length, time and velocity, respectively, de®ning non-
dimensional temperature and concentration by

T 0 � Tÿ Tc

DTr

and C 0 � C

Cr

�22�

where DTr � Th ÿ Tc, and using primes to denote non-
dimensional quantities, we obtain Eqs. (1), (2), (11)
and (16) in the following forms:

@z 0

@ t 0
� r �

ÿ
~V
0
z 0
�

� Ra Pr
ÿrT 0 � ĝÿ BrC 0 � ĝ

�� Prr2z 0 �23�

r2c 0 � ÿz 0, �24�

@T 0

@ t 0

�
1� 1

St

@ fl
@T 0

�
� r �

ÿ
~V
0
T 0
�
� r2T 0, �25�

@C 0l
@ t 0
� r �

�
~V
0
C 0l
�
� 1

Le
r2C 0l � SC: �26�

3. Solution method

An algorithm entitled SOLCON,1 which incorpor-
ates the closely coupled solution of the transport
equations in the vorticity±stream function formulation,
was developed. In this algorithm, a modi®ed alternat-

ing direction implicit (ADI) Samarskii±Andreyev
scheme [10] is used to solve iteratively the vorticity,
stream function, energy and solutal equations at each

time step. The modi®cation achieves accurate coupling
between the transient equations and the boundary con-
ditions and hence a true transient `simultaneous' sol-

ution of the equations. Since the temperature
boundary pro®le is moving in discrete time steps,
obtaining an accurate true transient solution is imposs-

ible without having all equations converged at each
time step. Apart from that, the use of iterations
becomes necessary because of the strong non-linearity
of all governing equations. To ensure stability of the

computational process, all source terms and non-linear

coe�cients depending on liquid fraction are linearized
based on the value of liquid fraction obtained from the

previous iteration.
The vorticity, stream function and energy equations

were discretized using central di�erences and solved by

the modi®ed ADI scheme with internal iterations.
Interface boundary conditions for vorticity and stream
function were applied at those mesh points in the solid

sub-region which are adjacent to the liquid. For the
calculation of vorticity boundary conditions, the de®-
nition of vorticity was used: ~z � r � ~V: The boundary

condition c � 0 was used for the stream function.

3.1. Concentration equation

The concentration Eq. (26) required special treat-

ment. It was discretized and solved using the control
volume approach. This ensures mass balance during
phase change in the partially solidi®ed control volume.

Integration of Eq. (26) over a control volume and dis-
cretization uniformly in each direction yields

C 0 ki,j ÿ C 0 kÿ1i,j

Dt
DxDy� Fi�1=2,j ÿ Fiÿ1=2,j � Fi,j�1=2

ÿ Fi,jÿ1=2

� 1

Le

"�
D 0i�1=2,j

C 0i�1,j ÿ C 0i,j
Dx

ÿD 0iÿ1=2,j
C 0i,j ÿ C 0iÿ1,j

Dx

�
Dy

�
 
D 0i,j�1=2

C 0i,j�1 ÿ C 0i,j
Dy

ÿD 0i,jÿ1=2
C 0i,j ÿ C 0i,jÿ1

Dy

!
Dx

#
� SCDxDy �27�

where F is the convection ¯ux integrated over the con-
trol volume face:

Fi�1=2,j � �u 0C 0 �i�1=2,jDy Fiÿ1=2,j � �u 0C 0 �iÿ1=2,jDy

Fi,j�1=2 � �v 0C 0 �i,j�1=2Dx

Fi,jÿ1=2 � �v 0C 0 �i,jÿ1=2Dx:
�28�

For simplicity we omit the index `l' showing that the

equation is being solved only for liquid concentration
Cl: Eq. (27) was solved over the whole computational
domain, although for all cells de®ned as `solid', the

liquid concentration was set to zero.
To resolve the sharp gradients of concentration in

the vicinity of interface, a second order upwind scheme1 SOLidi®cation and CONvection.
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[11] was used to discretize the convection ¯uxes. This
was chosen because it is more stable than central

di�erences, particularly for problems with low dif-
fusion coe�cients and hence high Lewis numbers. It is
considerably more accurate than ®rst order upwind

schemes but more complex since it uses a four-point
stencil for calculating the ¯uxes.

�u 0C 0 �i�1=2,j�
�
u 0i�1=2,j � ju 0i�1=2,jj

2

�

�
�
3C 0i,j ÿ C 0iÿ1,j

2

�

�
�
u 0i�1=2,j ÿ ju 0i�1=2,jj

2

�

�
�
3C 0i�1,j ÿ C 0i�2,j

2

�
�29�

where u 0i�1=2,j is the velocity component on the �i�
1=2, j� face of the control volume. Central di�erences

were used for the di�usion terms.
The non-dimensional di�usion coe�cients on the

faces of the control volume were set to one or zero
depending on whether Ti�1=2, j is greater than (or equal

to) Tm, or is less than Tm:
To account for the interface movement through the

partially solidi®ed control volume, the di�usion ¯ux in

the direction of solidi®cation, q 0i�1=2, j, integrated over
the control volume face Dy was written as

q 0i�1=2,j � D 0i�1=2,j
C 0i�1,j ÿ C 0i,j

Dx �
Dy �30�

where Dx � � 0:5�fl � 1�Dx is the distance between the

centre of the liquid portion of a partially solidi®ed
control volume and the centre of the next control
volume. Convection and di�usion ¯uxes in the direc-

tion normal to solidi®cation have been integrated over
liquid fractions of the control volume faces flDx:

3.2. Extrapolation procedure for interface concentration

The computed solute concentration can oscillate
when the phase change front moves from one cell into
the next. The reason is that in a ®xed grid ®nite
volume formulation, the computed values of C are cell

averaged values. As the interface moves from one cell
to the next, C suddenly drops from one value to a
lower value. The concentration in the new cell then

increases due to progressive solute rejection at the
interface, which occurs at a rate faster than di�usion
out of the control volume. The problem becomes even

more di�cult when variations of melting temperature
with solute concentration are taken into consideration.
The concentration-dependent melting temperature

obtained from Eq. (18) will have an unrealistic zigzag
shape and hence will not be suitable for the calculation

of the liquid fraction and the estimation of interface
position. To overcome this problem and to account for
the fact that the computed concentration is a cell aver-

age value, an exponential extrapolation procedure
based on the liquid fraction has been introduced to
®nd the value of the concentration at the solid/liquid

interface.
For steady, di�usion-controlled, unidirectional sol-

idi®cation, the solute build-up in front of the interface

can be described by an exponential function [12]. We
assumed a similar expression at each time step:

C�x� � CIe
ÿgx �31�

where g is a quantity to be determined and x denotes
distance in the x-direction measured from the inter-
face.
Let Ci, j denote the average concentration in the

liquid portion of the (i, j ) control volume:� flDx

0

C�x� dx � Ci, jflDx: �32�

Then Eqs. (31) and (32) yield

Ci,j �

� flDx

0

CIe
ÿgx dx

flDx
� CI�1ÿ eÿgflDx �

gflDx
: �33�

Using a Taylor series for the exponential function and
neglecting third order and higher terms, we obtain

CI � Ci,j

1ÿ 0:5gflDx
: �34�

The parameter g can be found from the interface con-
dition�
@C

@x

�
I

� ÿR

D

ÿ
1ÿ kp

�
CI �35�

where R is the growth or interface velocity �@ fs=@ t�Dx:
Di�erentiation of Eq. (31) together with Eq. (35) gives
following expression for g:

g � R

D

ÿ
1ÿ kp

�
: �36�

The interface solute concentration CI calculated from
Eq. (34) can be used to couple the temperature and

solute ®elds through Eq. (18) and to calculate the con-
centration in the solid as it forms. It is a smooth func-
tion of time (or position), as will be shown below. The

zigzag shape resulting from the use of Tm�C � is elimi-
nated. This extrapolation procedure is useful even
when Tm is constant, as it readily enables a smooth
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distribution of the interface concentration CI to be

obtained.

3.3. Summary of the numerical procedure

The numerical procedure performed at each iteration

p of time step k involves the following steps:

. New values for temperature T p,k, concentration

C p,k, vorticity z p,k, stream function c p,k and
velocity vector ~V

p,k
are calculated.

. CI is calculated by extrapolation from C p,k using

Eq. (34).
. The melting temperature T p,k

m is found from Eq.

(19).

. The liquid fraction f
p,k

l at each point of the compu-
tational domain is calculated.

. The source term S p,k
c for the solute transport

equation and the e�ective heat capacity coe�cient

@ fl=@T are updated.

This procedure is repeated at each iteration until all
equations are converged for time step k. Convergence

is declared when the average change in the absolute

value of each solution variable, relative to the maxi-

mum value of that variable, becomes less than a cer-
tain tolerance. Typically, the tolerance was in the

range 10ÿ11±10ÿ8. The time step is then advanced to

k� 1 and the above procedure is repeated.

4. Results and discussion

4.1. Constant melting temperature

The ®rst results presented were obtained with the
assumption that Tm does not vary with concentration.
Calculations were made for an ampoule 42 mm long

and 6 mm across. The magnitude of the gravity vector
was taken to be 10 mg, i.e., 9.81 � 10ÿ5 m sÿ2, acting
in a direction normal to the x-axis of the ampoule.

The property values of pure liquid bismuth at a refer-
ence temperature of 271.38C (the equilibrium melting
temperature) were used (Table 1).

The computational domain initially contained only
liquid Bi with a uniform solute concentration C0 of 1
at% Sn and a uniform temperature of 7008C. The cold

end of the ampoule (the left end) had an initial tem-
perature of 2728C. Along the top and bottom bound-
aries, the temperature increased from the left at 20 K/
mm and continued over a length of 21.4 mm until

7008C was reached. From that position onward, the
temperature remained constant. The right end of the
computational domain had a constant temperature of

7008C. Numerical experimentation showed that the
presence of a wall at 42 mm had no e�ect on the sol-
idi®cation or the ¯ow near the interface for the few

mm of solid that were formed. The pulling velocity Ð
the rate of translation of the boundary temperature
distribution Ð was 3.34 mm/s (one of the values used
in the MEPHISTO experiment), and was also imposed

from t > 0: Solidi®cation occurred from left to right as
time progressed. The cold end temperature decreased
with time in accordance with the imposed temperature

gradient until a minimum value of 508C was reached;
thereafter it was kept at 508C. This temperature distri-
bution was imposed at the liquid boundary, i.e., con-

duction in the ampoule was not considered.2

A uniform square mesh of 210 � 30 cells (0.2 � 0.2
mm) was used. Some calculations were also made with

Table 1

Property values and other quantities used in the computations

Property Symbol Value

Density r 10,070 kg/m3

Speci®c heat cp 144.87 J/kg K

Thermal conductivity l 12.4 W/m K

Thermal di�usivity a 8.500 � 10ÿ6 m2/s

Viscosity m 1.85 � 10ÿ3 kg/m s

Di�usion coe�cient for Sn in Bi D 2.7 � 10ÿ9 m2/s

Thermal expansion coe�cient bT 1.25 � 10ÿ4 Kÿ1

Solutal expansion coe�cient bC ÿ0.305 (kg Sn/kg alloy)ÿ1

Temperature gradient in adiabatic zone G 20 K/mm

Partition coe�cient k 0.029 at%/at%

Slope of liquidus line m ÿ2.32 K/at%

2 In a more recent work we have included conduction in the

quartz ampoule as part of the calculation procedure, and

have imposed a temperature gradient of 27 K/mm on the out-

side of the ampoule. This leads to an internal gradient of ap-

proximately 20 K/mm, as used here. The isotherms in the

sample remain virtually orthogonal to the ampoule axis,

although not in the ampoule itself, which has a much lower

thermal conductivity.
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a mesh size of 0.1 mm to ensure that 0.2 mm led to

adequate accuracy. After 1000 s of solidi®cation the

di�erences between the two solutions were 1.6% or

less for the concentration and velocities.

To validate the numerical solutions obtained using

SOLCON, the results were compared [13] with some

obtained using the commercial ¯ow code CFX 4.1,3

which is based on a primitive variable ®nite volume

formulation. Validation of the CFX results was in turn

obtained by a comparison of calculations with an ex-

periment in earth gravity using succinonitrile [14]. The

agreement between SOLCON and CFX was excellent:

within 2.2% for some relevant quantities.

The computations were performed for 8000 s (ap-

proximately 27 mm) of solidi®cation. When solidi®-

cation ®rst starts, the positive temperature gradient in

front of the interface leads to a negative density gradi-

ent, and the predominant ¯ow direction is downwards

(in the direction of ~g). With the gradual build-up of

solute in front of the interface, the density gradient

reverses; liquid starts to rise in the immediate vicinity

of the interface Fig. 2 shows stream function contours

in the liquid and isotherms in the entire ampoule after

2000, 5000 and 8000 s. At 2000 s, a very weak positive

vertical velocity has appeared near the interface in the

top and bottom corners; the ¯ow is predominantly

thermally driven and counterclockwise. At 5000 s,

solutal convection has become stronger and a reverse

cell has formed in front of the interface. After 8000 s,

this secondary cell has become competitive in strength

to the main thermal ¯ow: the non-dimensional stream

function in the core of the solutal cell is 1.08 � 10ÿ4

compared with ÿ5.18 � 10ÿ4 in the thermal cell. As

solutal convection increases, it a�ects the segregation

of the solute at the interface. Fig. 3 shows the solute

concentration across and along the ampoule at 2000,

5000 and 8000 s. In the early stages of solidi®cation,

the thermal ¯ow carries low C solute from the bulk of

the liquid to the top of the cavity; as the liquid ¯ows

down the interface, C increases. With increasing solute

concentration in front of the interface, and the conse-

quent reversal of the density gradient and velocity

there, the segregation reduces and, starting at about

5000 s, reverses. At 8000 s, there is a strong segre-

gation in which C at the top of the cavity is 22%

greater than that at the bottom.

Fig. 4(a) shows the changes in solute concentration

along the interface at 2000, 3000, 5000 and 8000 s. The

Fig. 2. Stream function contours and isotherms at (a) 2000, (b) 5000 and (c) 8000 s. Dashed lines indicate counter-anticlockwise ro-

tation.

3 Obtained from AEA Technology plc, CFDS, 8.19

Harwell, Didcot, Oxfordshire OX11 0RA, UK.
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changes in segregation at the interface are shown in

Fig. 4(b) (which depicts values computed every 10 s).
Due to the convection across the interface induced by
the thermal cell, the segregation increased from zero to

just over 15% in 2000 s, with the maximum concen-
tration occurring at the bottom of the ampoule. As the
solutal cell increased in strength, the balance of con-

vection and di�usion in the solute-rich interface led to
a reduction of the segregation, which reached a mini-
mum of about 1% after almost 5000 s. By this time,
the solutal-driven reverse ¯ow cell had formed. As it

increased in strength, the segregation increased in
value again, but now in such a way that the maximum
concentration occurred at the top of the ampoule. By

8000 s, it had reached 25%.
Fig. 5 shows contours of solute concentration in the

solidi®ed part of the sample after 2000, 5000 and 8000

s of solidi®cation. These contours indicate how a
change in the segregation in the liquid a�ects the dis-
tribution of solute in the crystal.

4.2. Concentration-dependent melting temperature

For most materials, the melting temperature Tm is a
function of the interface solute concentration CI: The

results presented in this section show the e�ects of the

coupling with the phase diagram on the solidi®cation.
The interface solute concentration CI calculated from
Eq. (34) has been used to couple the temperature and

solute ®elds by computing the melting temperature
from Eq. (18). Solutions have been obtained for both 1

and 10 mg. Computations have been made for 3000 s
of solidi®cation.
The ®rst set of results is for a gravity level of 10 mg.

Fig. 6 shows the history of the computed cell average
concentration in the liquid portion of the partially sol-
idi®ed control volume (solid lines) and the extrapolated

interface concentration (dashed lines). The computed
solute concentration oscillates when the front moves
from one cell into the next, while the interface solute

concentration CI obtained using extrapolation pro-
cedure Eqs. (34)±(36) remains a smooth function. As

the volume occupied in a partially solidi®ed cell by the
liquid decreases to zero, interface concentration
becomes equal to the cell average solute concentration.

This explains why the line for the extrapolated concen-
tration passes through the peaks of the zigzags of the
line for the cell average concentration.

Fig. 7 shows the position of the moving solid/liquid
interface at the mid-height of the ampoule when com-

Fig. 3. Solute concentration at 2000, 5000 and 8000 s.
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Fig. 4. (a) Distribution of solute concentration along the interface at 2000, 3000, 5000 and 8000 s. (b) Time history of segregation

at the interface.
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puted using both constant and concentration-depen-
dent melting temperatures. For constant Tm, the inter-
face or growth velocity is the same as the furnace

pulling velocity, namely 3.34 mm/s. However, with a

concentration-dependent melting temperature, the
solute build-up during solidi®cation causes a decrease
in the melting temperature and a consequent reduction

Fig. 5. Contours of solute concentration in the solid part of the sample at (a) 2000, (b) 5000 and (c) 8000 s.

Fig. 7. Position and velocity of the interface at the mid-height

of the ampoule computed with constant and with concen-

tration-dependent melting temperature.

Fig. 6. Time history of the computed average concentration in

the liquid portion of the partially solidi®ed cell (solid lines)

and extrapolated interface concentration (dashed lines) at the

mid-height of the ampoule.
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in the rate of interface movement (dashed line). This is
a transient e�ect, and if solidi®cation continued until
the eutectic composition was reached, the growth and
pulling velocities would become the same.

The histories of the interface solute concentration
and corresponding values of melting temperature at
the mid-height of the interface are shown in Fig. 8.

The solid lines are results obtained with a temperature
gradient, G, in the transition zone of 20 K/mm. The
interface solute concentration CI rises during solidi®-

cation from 1 at% to about 10 at% causing a decrease
in the melting temperature of about 218C. After about
2800 s of solidi®cation, the results showed oscillations
in CI, which can be explained by considering the con-

dition necessary for stable plane front solidi®cation.
According to the theory of constitutional supercooling
(e.g., Flemings [15]), instability of the plane front

(leading to a cellular interface) can occur when the
liquid immediately in front of the interface has a tem-
perature which is below its equilibrium liquidus tem-

perature (i.e., below its melting temperature). In this
condition, the liquid is said to be supercooled.
Constitutional supercooling will not occur when the

actual temperature gradient in the liquid in front of
the interface is equal to or greater than the melting
temperature gradient corresponding to the local solute
concentration gradient. The melting temperature gradi-

ent can be derived from the interface condition Eq.
(35) and Eq. (18) for Tm:

�
@Tm

@x

�
I

� m

�
@C

@x

�
I

� ÿR

D
m
ÿ
1ÿ kp

�
CI: �37�

Therefore, the front is stable when�
@T

@x

�
I

rÿ R

D
m
ÿ
1ÿ kp

�
CI: �38�

The maximum value of CI, which does not exceed the
constitutional supercooling criterion, can be estimated

from Eq. (38). As noted above, during the initial tran-
sient the actual growth velocity is not equal to the
pulling velocity. From Fig. 7, the average growth vel-

ocity R is 3.04 mm sÿ1. Recalling that the imposed tem-
perature gradient G is 20 K/mm and noting that
m � ÿ2:32 K/at%, instability can be expected when
the maximum value of the interface solute concen-

tration exceeds 7.99 at%.
Results computed with G = 25 K/mm are shown by

the dashed lines in Fig. 8. For this temperature gradi-

ent, the maximum value of CI permitted by the consti-
tutional supercooling criterion is 9.99 at%. The
concentration had not reached this value at any point

on the interface by 3000 s. Thus supercooling was
absent and the curves for CI�t� and Tm�t� correspond-
ing to this gradient remain smooth.
Fig. 9(a) shows the solute concentration distri-

butions at the mid-height of the ampoule at 1000, 2000
and 3000 s for G = 20 K/mm. Fig. 9(b) shows the
melting temperature distributions (solid lines) resulting

from the solute distributions shown in Fig. 9(a) and
the actual temperature distributions (dashed lines).
Because of the high thermal conductivity of Bi, the

temperature ®eld is not signi®cantly a�ected by con-
vection and the slope of these lines is the same as the
imposed gradient of 20 K/mm. At 1000 and 2000 s the

peak values of concentration at the interface are less
than the limiting value, the actual temperature gradient
is above the melting temperature gradient, and there-
fore supercooling is absent. The melting temperature

gradient reaches and then exceeds the actual tempera-
ture gradient very close to 3000 s causing an instability
of the plane front solidi®cation. The liquid temperature

becomes equal to the melting temperature not only at
the interface, but also at some small distance away
from the interface. As a result, two adjacent control

volumes in the direction of solidi®cation undergo
phase change at the same time. In practical terms, this
means that the interface is no longer sharp and solidi®-
cation is taking place over a temperature range.

Fig. 10 shows the e�ect of the magnitude of g on
the distribution of solute concentration along the inter-
face (a and b) and position of the interface (c and d)

at 1500, 2000, 2500 and 3000 s. Dashed lines in Fig.
10(a) and (b) correspond to the parts of the interface
at which instability of the plane front appeared and in

front of which supercooled liquid existed. These
regions are shown by dots in Fig. 10(c) and (d), which
identify the adjacent control volumes in both of which

Fig. 8. Time history of solute concentration and melting tem-

perature at the mid-height of the interface with temperature

gradient 20 K/mm (solid lines) and 25 K/mm (dashed lines).
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Fig. 9. (a) Distribution of solute concentration at the mid-height of the ampoule at 1000, 2000 and 3000 s. (b) Distribution of melt-

ing temperature (solid lines) and the actual temperature distribution (dashed lined) at the mid-height of the ampoule at 1000, 2000

and 3000 s.
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solidi®cation is occurring. Instability appears earlier at

10 mg due to the higher solute segregation which builds
up at the interface. By 2500 s, the segregation of solute
at the interface at 10 mg was 20.6% whereas for 1 mg it

was 2.65%. The segregation at 10 mg is such that the
concentration near the bottom of the cavity exceeds
9.4 at% (Fig. 10(b)) while at 1 mg the concentration

remains less than 8.7% as shown in Fig. 10(a). The nu-
merical solutions show instability when the solute con-

centration exceeds 9.4 at%. On the discrete level,

instability appears when the cell adjacent to the par-
tially solidi®ed control volume in the direction of
increasing x becomes supercooled, i.e. the cell bound-

ary temperature becomes less than Tm and hence the
liquid fraction in this control volume lies between 0
and 1. Therefore the constitutional supercooling cri-

terion has to be applied at this cell boundary. If we
consider Ccr � 7:99 at% as the limiting cell boundary

Fig. 10. Distribution of solute concentration across the interface (a and b), and position of the interface (c and d) at 1500, 2000,

2500 and 3000 s for 1 and 10 mg. Dotted lines indicate instability of the plane front.
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value the limiting value for interface concentration can
be found by applying Eq. (34) at x � flDx and using a
truncated Taylor series. This yields to

�CI �cr� Ccr

�
1� R

D

ÿ
1ÿ kp

�
flDx

�
�39�

It is clear that �CI�cr depends on the actual position of

the interface within the partially solidi®ed control
volume, which is determined by the cell liquid fraction.
For a partially solidi®ed cell in front of which super-

cooled liquid exists, as shown in Fig. 10(b) for 2500 s,

fl � 0:7062 and the estimated critical concentration is

�CI�cr � 9:21 at%.

Values of solute concentration at the interface and

the position and shape of the interface after 2000 s of

solidi®cation are shown in Fig. 11 for two values of g

and for constant (dashed lines) and concentration-

dependent (solid lines) melting temperature. Inclusion

of a concentration-dependent melting temperature in

the computations has only a small e�ect on segregation

at the interface, changing it from 17.05% for constant

Fig. 11. Distribution of solute concentration along the interface (a and b), and position of the interface (c and d) after 2000 s of

solidi®cation for constant (dashed lines) and concentration-dependent (solid lines) melting temperature for 1 and 10 mg.
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Tm to 16.05% for variable Tm at 10 mg, and from 1.99
to 1.97% at 1 mg, respectively. Segregation is more

strongly a�ected by gravity level. Values of concen-
tration at the interface are smaller in the case of
Tm�C � due to the shorter distance of solidi®cation as

indicated in Fig. 11(c) and (d).
If Tm is constant, the interface is represented by an

isotherm and remains virtually ¯at (i.e. parallel to the

y-axis). However, when Tm is concentration-dependent,
segregation (especially at 10 mg) causes the interface to
be curved, and it is no longer an isotherm. Di�erences

in the shape of the solid/liquid interface determined by
di�erences in the segregation at 1 and 10 mg can be
seen in Fig. 11(c) and (d). The ¯ow patterns in the two
cases (not shown) are very similar.

5. Conclusion

A method for the computational study of directional

solidi®cation based on the ®xed grid single domain
approach has been described. The enthalpy method is
used to solve for the temperature ®eld over the compu-
tational domain including both the solid and liquid

phases and to estimate the location of the solid/liquid
interface. A source term accounting for the release of
solute into the liquid during solidi®cation has been in-

corporated into the solute transport equation. The vor-
ticity±stream function formulation is used to describe
thermosolutal convection in the liquid region.

The liquid fraction in a partially solidi®ed cell is
used to describe concentration changes within one con-
trol volume due to solidi®cation. In some ways this is

analogous to explicit interface tracking with infor-
mation about the liquid fraction being used to estimate
the interface location at each time step.
A ®xed grid single domain approach, when im-

plemented to solve for the solute concentration using
the source term derived by Voller [7], gives solutions,
which are averaged over the computational cells. To

®nd the concentration at the interface, an extrapol-
ation procedure is needed to recover the interfacial
values from the computed cell average values. We have

shown that the proposed extrapolation procedure leads
to a distribution of interface concentration over time
which is smooth and which satis®es the computed
values at those times when the interface passes through

a cell boundary. Knowing the actual interface concen-
tration is essential if coupling with the phase diagram
(a concentration-dependent melting temperature) is to

be included in a solidi®cation model. Under micro-
gravity conditions, the ¯ow produced by both the ther-
mal and the solutal concentration gradients is very

weak. However, the e�ect of this weak ¯ow on segre-
gation cannot be dismissed, even at 1 mg. If convection
is neglected and only di�usion is considered, no segre-

gation will be produced. The numerical results show
that this is de®nitely not the case.

The results also show clearly that it is important to
include the e�ect of solute concentration on the melt-
ing temperature in a solidi®cation simulation. The vel-

ocity of the interface is determined not just by the
pulling speed but also by the rate at which the inter-
face concentration is increasing.
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